

EULERS TOTIENT FUNCTION AS APPLIED TO FINDING THE NUMBER OF CYCLIC SUBGROUPS OF FINITE p-GROUPS

S. A. Adebisi¹ and M. Ogiugo²

¹Department of Mathematics, Faculty of Science, University of Lagos, Nigeria. Email: adesinasunday@yahoo:com

²Department of Mathematics, School of Science, Yaha College of Technology, Lagos.

ARTICLEINFO

Received: 28 August 2021 Revised: 21 October 2021 Accepted: 26 November 2021 Online: 30 December 2021

To cite this paper: S.A. Adebisi & M. Ogiugo (2021). Eulers Totient Function as Applied to Finding the Number of Cycle Subgroups of Finite p-Groups. International Journal of Mathematics, Statistics and Operations Research. 1(2): pp. 163-167.

ABSTRACT

Given that $\S(H)$ is the partially ordered set of cyclic subgroups of a nite group H. Suppose that A is the class of p-groups whose order is p^n for integer n > 3. Dene a map; $\beta : A \to (0; 1]$ by $\beta(H) = |\S(H)|$

This work in an eort to make investigations on the second minimum and maximum value of β alongside their corresponding minimum and maximum points, applies the eulers totient function as to nding the number of cyclic subgroups of nite p-groups.

Key words and phrases: Finite *p*-Groups, Cyclic subgroups, Dihedral subgroup, Abelian subgroups, Quaternion group, Semi-dihedral group.

AMS Mathematics Subject Classication 2020: Primary: 20D60. Secondary: 20D15

ORCID of the corresponding author: https://orcid.org/0000-0003-3766-0910.

1. INTRODUCTION

Suppose that A represents the class of p-groups which have order p^n for n an integer and $n \ge 3$. Given a nite group $H \in A$ and let $\S(H)$ denote its partially ordered set subgroups which are cyclic. Moreso, let $C_r(H)$ be the number of cyclic subgroups of order p^r in H According to Miller (see [3]-[5]), it has been proved that $C_r(H) \equiv 0 (mod p) \ \forall_r \in \{2, 3, ..., n\}$. This happens for every p being odd.

2. THE EULERS φ-FUNCTION

The function φ is called Eulers totient function. Here, if m is an integer such that m is a prime p then, $\varphi(p) = p - 1$.

Denition (Euler's Totient Function)

Euler's Totient Function, denoted φ is the number of integers k in the range $1 \le k \le n$ $\Rightarrow \gcd(n, k) = 1$. A closed form of this function is given by

$$\varphi(n) = n \prod_{prime \ p \ni p \mid n} \left(1 - \frac{1}{p} \right)$$

3. MULTIPLICATIVE PROPERTY

Euler's Totient Function satises the multiplicative property–that is, for m, n relatively prime, $\varphi(mn) = \varphi(m)\varphi(n)$. For Example $\varphi(84) = 84 \times \left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{3}\right) \times \left(1 - \frac{1}{7}\right) = 24$.

Denition: (see [1]) An arithmetic function is any function dened on the set of positive integers. An arithmetic function f is called multiplicative if f(mn) = f(m)f(n) whenever m, nare relatively prime.

Theorem: If *f* is a multiplicative function and suppose that $n = p_1^{a_1} p_1^{a_2} ... p_s^{a_s}$ is its prime-power factorization, then $f(n) = f(p_1^{a_1}) f(p_1^{a_2}) ... f(p_s^{a_s})$.

Theorem: Eulers phi function φ is multiplicative implies that if gcd(m, n) = 1 then, $\varphi(mn) = \varphi(m)\varphi(n)$.

Theorem: For any prime p, we have that $\varphi(pa) = p^a p^{a-1} = p^{a-1}(p-1) = \left(1 - \frac{1}{p}\right)$.

Theorem: For any integer n > 1, if $n = p_1^{a_1} p_1^{a_2} ... p_s^{a_s}$ is the prime-power factorization then, $\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) ... \left(1 - \frac{1}{p_s}\right) = p_1^{a_1 - 1} p_1^{a_2 - 1} ... p_s^{a_s - 1} (p_1 - 1)$ $(p_2 - 1) ... (p_s - 1)$. Since φ is multiplicative, we get $\varphi(n) = \varphi(p_1^{a_1}) \varphi(p_1^{a_2}) ... \varphi(p_s^{a_s}) = p_1^{a_1} \left(1 - \frac{1}{p_1}\right) p_2^{a_2 - 2} \left(1 - \frac{1}{p_2}\right) ... p_s^{a_s} \left(1 - \frac{1}{p_s}\right) = n \prod_{p|n} \left(1 - \frac{1}{p}\right), \ p \ \text{ranges over the prime divisors of } n$

Denition (see[2]): The number of cyclic subgroups of a nite group *G* can be dened as

$$|\S(G)| = \sum_{g \in G} \frac{1}{\varphi(o(g))} \tag{1}$$

where φ is the Eulers totient function and o(g) is the order of the element g of G.

Theorem (see [2]): Let $H \in A \ni H$ contains a cyclic maximal subgroups. Given that p is not even. Then, H is isomorphic toabelian type $\mathbb{Z}_p \times \mathbb{Z}_{p^{n-1}}$ or to M_{p^n} . Otherwise, H is isomorphic to $\mathbb{Z}_2\mathbb{Z}_{2^{n-1}}$ or to any of the non-abelian groups lasted below:

- 1. $M(p^n)$, $n \ge 4$
- 2. $D_{2^n} = \langle a, b | a^{2^{n-1}} = b^2 = 1 = bab^{-1} = a^{-1} \rangle$
- 3. $Q_{2^n} = \langle a, b | a^{2^{n-1}} = b^2 = 1, bab^{-1} = a^{2^{n-1}} 1 \rangle$
- 4. $QD_{2^n} = \langle a, b | a^{2^{n-1}} = b^2 = 1, bab^{-1} = a^{2^{n-2}-1} \rangle \ n \ge 4$

In [14], the numer of cyclic subgroups of the non-abelian (i) to (iv) was found.

4. STATEMENT OF PROBLEM

By applying (1) above, we show each of the following:

- 1. $|\S(\mathbb{Z}_n \times \mathbb{Z}_{n^{n-1}})| = |\S(M(p^n))| = 2 + (n-1)p$
- 2. $|\S(D_{2^n})| = n + 2^{n-1}$
- 3. $|\S(Q_{2^n})| = n + 2^{n-2}$
- 4. $|\S(QD_{2^n})| = n + 3:2^{n-3}$

Proof of The Results:

5. The abelian type $|\S(\mathbb{Z}_{v} \times \mathbb{Z}_{v^{n-1}}|)$ and the modular group

$$|\S(M(P^n))| = 2 + (n-1)p$$

Proof:

$$\begin{split} |\S(\mathbb{Z}_p \times \mathbb{Z}_{p^{n-1}}| &= \varphi(1) + (p^2 - 1) \cdot \left(\frac{1}{\varphi(p)}\right) + (p^3 p^2) \cdot \left(\frac{1}{\varphi(p^2)}\right) + (p^4 p^3) \cdot \left(\frac{1}{\varphi(p^3)}\right) \\ &+ (p^5 p^4) \cdot \left(\frac{1}{\varphi(p^4)}\right) + \dots + (p^n p^{n-1}) \cdot \left(\frac{1}{\varphi(p^{n-1})}\right) \\ &= 1 + (p^2 1) \cdot \left(\frac{1}{(p-1)} + p + p + p + p + p + \dots + p(n-2) \text{ times}\right) \\ &= 1 + (p+1)(p-1) \cdot \left(\frac{1}{(p-1)}\right) + (n-2)p = 1 + p + 1 + (n-2)p \\ &= 2 + (n-1)p \end{split}$$

6. The Dihedral group $|\S(D_{2^n})| = n + 2^{n-1}$

Proof:

Since
$$D_{2^n} = \langle a, b | a^{2n-1} = b^2 = 1 = bab^{-1} = a^{-1} \rangle$$
, we have that $D_{2^n} = \{1, a, a^2, a^3, ...a^{-1+2^{n-1}}, b, ba, ba^2, ..., ba^{1+2^{n-1}} \}$.

Now, $a^{n-1} = b^2 = 1$, there exists 2^{n-1} elements of the form a^m , where $m = 2^{n-1}$. We have one of order 2, 2^{m-1} of order m. The remaining 2^{n-1} elements are of order 2 each. We have $\varphi(2) = 1$. Hence, we have $|\S(D_{2^n})| = 2^{n-1} + k$. To find k. For the highest order 2^{n-1} , there are 2^{n-2} of them, followed by the order 2^{n-2} , there are 2^{n-3} of them, and following this order, we have 2^{n-t} of order 2^{n-t+1} . By this analysis, we have,

7. The Quaternion Group $|\S(Q_{2^n})| = n + 2^{n-2}$

Proof:

8. The Quasidihedral Group $|\S(QD_{2^n})| = n + 3 \cdot 2^{n-3}$

Proof:

References

- Annie Xu and Emily Zhu Euler's Totient Function and More! Number Theory September 18, 2016)
- 2. Lazorec M., Rulin S. and Marius T. (2020) 2nd minimum/maximum value of the no. of cyclic subgroups of nite *p*-groups. arXiv:2001.10521v1[math.GR]
- 3. Miller G.A. An extension of Sylow's theorem, Proc. London Math. Soc. (2) 2 (1905). 142-143 4 S. A. ADEBISI1 AND M. OGIUGO 2
- 4. Qu, H., Finite non-elementary abelian *p*-groups whose number of sub-groups is maximal, Israel J. Math. 195 (2013) 773-781.
- 5. Richard I.M., A remark on the number of cyclic subgroups of a nite group, Amer. Math. Monthly 91 (1984), no.9, 571-572